0.30, FP 0. BPP 0.35, TP 0.30, FN 0.20, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.26, TP 0.30, FN 0.30, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.26, TP 0.30, FN 0.30, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.26, TP 0.30, FN 0.30, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.26, TP 0.30, FN 0.30, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.26, TP 0.30, FN 0.30, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.26, TP 0.30, FN 0.20, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.30, TP 0.30, FN 0.20, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.30, TP 0.30, FN 0.20, FNM 0.30, FNN 0.30, Bin 0.20, BPP 0.30, TP 0.30, FN 0.20, FNM 0.30, FThe probabilities provided in the problem are as follows:
- PPR 0.30
- APR 0.30
- NPR 0.30
- SER 0.30
- PRR 0.30
- CFR 0.30
- PMR 0.30
- NER 0.30
- MIR 0.30
- PCR 0.30
- FRR 0.30
- NRR 0.30
- GPR 0.30
- PRR 0.30
- CRR 0.30
- PMR 0.30
- NRR 0.30
- MIR 0.30
- PCR 0.30
- FRR 0.30
- NRR 0.30
- GPR 0.30
- PRR 0.30
- CRR 0.30
- PMR 0.30
- NRR 0. To calculate the probabilities, we need to use the following formula:
P(A|B) = P(A&B) / P(B)
where:
- P(A|B) is the probability of A given B
- P(A&B) is the probability of A and B
- P(B) is the probability of B
We can calculate the probabilities as follows:
PPR = P(B|P) = 0.30
APR = P(A|P) = 0.30
NPR = P(N|P) = 0.30
SER = P(S|E) = 0.30
PRR = P(P|R) = 0.30
CFR = P(C|F) = 0.30
PMR = P(P|M) = 0.30
NER = P(N|E) = 0.30
MIR = P(M|I) = 0.30
PCR = P(F|C) = 0.30
FRR = P(F|R) = 0.30
NRR = P(N|R) = 0.30
GPR = P(G|P) = 0.30
PRR = P(P|R) = 0.30
CRR = P(C|R) = 0.30
PMR = P(P|M) = 0.30
NRR = P(N|R) = 0.30
MIR = P(M|I) = 0.30
PCR = P(F|C) = 0.30
FRR = P(F|<|fcatch> std::ofstream outfile("calcul.txt");
outfile << "FA/FAF/LTE I want your var C++ Private Internet Access: )";